TRU Student Class Combinations and

Reddit Comment Data Analysis

Evan Mackay

Kristofer Campbell

Introduction

For our final project, we decided on two datasets that we found to be interesting
in the sense that they were both relevant to the course material in this class, and they
were relevant to our interests as well.

The first dataset is a list of all TRU student’s class combinations for Winter 2018.
We were able to obtain this data simply by asking the TRU IT department nicely. They
were kind enough to provide the data by writing an SQL statement to return the
necessary data, while filtering out unnecessary information such as students that
dropped the classes, or only audited the class (Code Block A). In addition to simply
being an interesting dataset to analyze, we also believed that our work could possibly
help TRU with eliminating some course conflicts in the future. Currently, TRU predicts
the number of students that will take a class simply by using the number of students that
took the class in the previous semester, but they don’t take into account the growth or
decline of a field of study. In conjunction with this dataset we used the publicly available
course data that contains information about the course, location, meeting times, and the
professor teaching the course.

The second dataset is of all Reddit comments in the month of January of 2015
(Baumgartner). This dataset was particularly challenging to work with, simply because
of its size. This dataset contained all usernames, subreddit information, time the
comment was posted, number of upvotes, number of downvotes and much more, for an

entire month of one of the internet’s largest websites. Originally, the entire dataset was

larger than 30 GB. After working with it and removing the information we did not need,

one of our final CSV files for one of our analysis methods was a little more than 8 MB.

TRU Class Associations

One of the methods we used to analyse the TRU student dataset was to apply
association rules in order to determine classes that are often taken together in a single
semester.

Ouir first attempt at mining association rules proved unsuccessful. We only used
a single semester of data and we used every course on the list. This was unsuccessful
for two reasons. Firstly, the diversity of the itemsets in the dataset was quite high which
required extremely low cutoffs for confidence and lift. Secondly, the dataset was not
filtered at all which allowed what | called ‘prescribed semesters’ to massively influence
the association rules. ‘Prescribed semesters’ is the name | gave to semesters in which
the student is not given the option to choose which classes to take. This skews the
results when a large amount of students take ‘prescribed semesters’ the classes in
those semesters become associated with other classes in the ‘prescribed semester.’

Once we became aware of the problems we started filtering the dataset. The first
thing we did was remove the ‘prescribed semesters’, we discovered that certain
subjects have ‘prescribed semesters’ so we were able to add a filter to disinclude the
subjects that we knew had ‘prescribed semesters.” To solve the issue of the diversity of
the itemsets being too high we both choose to find association rules of class

combinations that contained a specified subject and decided to use 7 years of class

combinations instead of a single semester. We chose the subject ‘COMP’ as we were
most familiar with it. This provided interesting results, when we sorted the ‘COMP’ rules
by confidence we found that the top 9 rules didn’t contain a single ‘COMP’ class,
instead contained ‘BIOL’ classes being associated with other ‘BIOL’ classes. We
theorized that this was due to Biology being a much more popular subject than
Computer Science. Combinations containing COMP were 70% as common as
combinations containing BIOL. By looking at the program requirements we were able to
see that Biology students are encouraged to take certain Computer Science classes as
electives. Both of these theories would explain the top association rules for Computer
Science. We will look into whether this appears with other subjects as a way of

optimizing how TRU could schedule classes.

TRU Class Size vs Length

We noticed at TRU in our experience there was very small class sizes. We
wanted to see if this expanded across different subjects and if so, does class length
have an impact. We saw (Figure A7 the x axis being class size and the y axis being
class length) that a couple clusters emerged. One cluster of the orange points
represented the nursing practicum while the business classes had large class sizes with
relatively short class length. We also noticed how the majority of the classes taught at
TRU had under 80 students with the size sharply declining as class length increased.
We theorized that this had more to do with TRU scheduling than it had to do with

students preferring to take smaller class sizes. There would be no way of knowing as

currently students choose classes from what the schedule shows. There is also very

little option to take classes of different length at TRU due to limited options.

Subreddit Associations

From the original Reddit dataset (Baumgartner), only two variables were needed
from each data point to create associate rules for subreddits.

Firstly, the username of the user that posted the comment. This will help us with
grouping the data into a list of subreddits that each user participates in. Secondly, the
subreddit name where the comment was posted. With these two variables for each
data point, it is possible to create a list of all subreddits that each user commented on in
January of 2015.

One problem with our data gathering method in this case, is that user
participation on Reddit should not completely be linked to commenting. There are many
more ways to participate on a subreddit other than commenting on a post. Users can
vote on posts or comments, or submit their own content. These forms of activity were
not included in our dataset, so any association rules for user activity on a subreddit is
solely linked to which subreddits they commented on in January of 2015.

Another potential problem is that subreddits which essentially represent the same
concept may have their associations disproportionately changed. If a user participates
on r/NBA for example, they may not participate on r/Basketball, even though it is
something they may be interested in, simply because they have satisfied their

basketball content by already participating in r/NBA.

Our hope for this data analysis was to find interesting relationship between
unrelated subreddits. For example, if there was a strong correlation between r/Cats and
r/Bikes, that would be a surprising result that we would be interested in. We were less
interested in relationships between obviously related subreddits. For example a
relationship between r/Cats and r/Kittens would be unsurprising and mostly
uninteresting.

We expected default subreddits to dominate the top of the association rules. Not
just because they would have the most participation, but because new Reddit users
may be more likely to be stuck participating in the same default subreddits. So on
average, a default subreddit may be more likely to be associated with other default
subreddits only because users may not know where to find other subreddits.

Our actual findings determined that the default subreddits in fact did not
dominate the top of the association rules. The top rule when sorting by lift was
r/Nintendo — r/3DS (Figure B2). Like mentioned before, association rules like this are
rather uninteresting because they are quite predictable. Unfortunately, we didn’t predict
that since the range of data is so large, because there are thousands of subreddits, that
it is practically impossible to find interesting relations between seemingly unrelated
subreddits. Instead of being dominated by the default subreddits, our association rules
were instead populated by predictable combinations of sports subreddits or other
related topics. We looked for a long time for any interesting combination of subreddits

in our association rules, but failed to find anything noteworthy. Perhaps given a longer

time period than one month, users would be more likely to participate in a range of

subreddits, and that would give more interesting results.

Subreddit Hourly Activity Bagging

From the original huge Reddit dataset with all information that can possibly be
obtained from a Reddit comment for all of January 2015 (Baumgartner), only three
variables were needed from each piece of data in order to classify a subreddit into how
active it was in each hour of the day.

Firstly, the date and time a comment was posted. The original time given from
the dataset was in a unix timestamp format, which means that we had to convert it to a
normal date-time format. After doing this, and converting everything into UTC time
(Code Block D), all the comments ranged from January 1 00:00:00 to January 31
23:59:59.

Secondly, the subreddit name that the comment was posted to. This variable is
how we later categorized the data. It is technically possible to categorize the activity of
a subreddit using only these two variables, but in order to get a more accurate
representation, we also included a third.

Lastly, the total votes a comment received. A comment on Reddit can either be
upvoted (+1) or downvoted (-1). The total vote count on a comment is calculated by
taking the number upvotes and subtracting the number of downvotes. By taking into

consideration the total vote count of a comment, we can better quantify the activity of a

subreddit at a certain time. A comment can be voted on hours after it was posted of
course, but on average we believe this helps to categorize user activity.

After all the comment data was shortened to its timestamp, subreddit and vote
count (Code Blocks C and D), it was now possible to combine all the data points that
shared the same subreddit, and then further categorized it into the hour of the day it
was posted. Essentially, each subreddit had 24 values for the total count of votes on
comments that were posted in their respective hour. Since all timestamps were in UTC
time, the hours are standardized so it is then possible to compare subreddit activity
throughout a 24 hour period (Code Block E).

Many comparisons between most subreddits would be pointless, such as
comparing r/Cats and r/Tea would be mostly meaningless because the subreddits are
unrelated, and any difference in peak hours would most likely be random. However,
there are interesting comparisons that can be made between subreddits such as r/Cats
and r/Dogs for example. If there was a large difference in the peak of related
subreddits, it could suggest the the average user on one subreddit is more likely to be
active at a different time of day compared to the other subreddit. Our hopes were to
find interesting comparisons between related subreddits, but we also expected to find a
general user activity pattern that would apply to almost all subreddits. It would make
sense to find this, because the participation of a subreddit and its related topic would
likely have very minimal effect on the overall schedule of the user.

After adding some of the top subreddits to a plot of time vs votes, and ranking the

data so red represented subreddits with the highest overall participation, and blue had

the lowest (Figure A1), it was clear that the top subreddit in terms of votes on comments
was r/AskReddit. AskReddit has so much participation in fact, that it distorted the rest
of the chart and made patterns harder to see. After flipping the axis, and removing
r/AskReddit from the data, a clear pattern emerged from the data (Figure A2). There
appears to be a very strong correlation between the time a comment is posted, and the
number of votes the comment gets. For example, in the largest subreddits, a comment
posted at 9am UTC is expected to have approximately a quarter the number of total
votes as a comment at 6pm UTC. A linear regression line is added to show the overall
trend of these subreddits (Figure A3). In Figure A4, some of the subreddits were
removed to increase the readability, and the data was bagged.

The Bagging or Bootstrap Aggregation was done by first bootstrapping the
average of a subreddit at each individual hour. This was done for each hour and plotted
as a grey line on the graph (Figure A4 and A5). This was repeated 50 times (50 was an
arbitrary number we found with trial and error). We then bootstrapped the values of all
of the previously bootstrapped values at each hour to find the final bagged line. This
was plotted in black (Figure A4 and A5).

Our code allowed for easy analysis of a given list of subreddits, For example we
graphed all subreddits containing the word ‘cats’ (Figure A6) As in the situation with the
most popular subreddits we had to exclude the most popular subreddit ‘cats’ as it was
warping the scale of the graph. Unfortunately our dataset predates our favourite cat
related subreddit ‘SiberianCats’. There was too few comments across cat related

subreddits to produce a trend.

We also wanted to show the potential danger of the result if a subreddit was
associated with a certain geographical location. Of course, if a subreddit is extremely
particular to a location, the activity on the subreddit would correlate with that location’s
sleeping and activity patterns. In order to demonstrate this, we took some of the largest
location subreddits and compared them to each other. Most of the subreddits belong in
North America, and there is little variation among those, but a few European and
Oceanic subreddits are included which are in green shades. It is clear that those
subreddits have a drastically different activity pattern. Even among the North American
subreddits, there is a clear shift in activity hours between r/Toronto and r/Vancouver.
Vancouver appears to be a few hours later than Toronto, which makes sense since the
West coast is 3 hours behind the East coast time zone. This data was also bagged,

and the bagging lines are displayed.

References

Baumgartner, J. (n.d.). Learn about Big Data and Social Media Ingest and

Analysis. Retrieved from https://pushshift.io/

Eric Youd (2018, March 26) Person Conversation and datasource

L. M. Sheikh, B. Tanveer and M. A. Hamdani, "Interesting measures for mining
association rules," 8th International Multitopic Conference, 2004. Proceedings of INMIC

2004., 2004, pp. 641-644.

Appendix

Code Block A (SQL)

select student_uid as "UNIQUEID", --Delete UNIQUEID in output to anonymize

student_term_code as "TERM",
listagg(sections_subj_code||sections_crse_numb]||sections_seq_numb) within group (order by
sections_subj_code,sections_crse_numb,sections_seq_numb) as "COURSES"
from studentDB.student join studentDB.sections
on sections_term_code = student_term_code

and sections_crn = student_crn

where student _campus_code = 'Kamloops' --Campus Only

and student_term_code like '%0' --No OL semesters

and student_type code not like 'D%' --Ignore Drops

and student_course_code not in (‘Audit’,'Cancel') --No Audit/Cancels

and sections_type_code <>'N' --No Sem/Labs

and sections_subj code not like 'X%' --No Non-Transcriptables
group by UNIQUEID,

student_term_code

order by "TERM" desc,

"COURSES"

https://pushshift.io/

Code Block B (Python)

Evan Mackay

#

import csv

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches
import matplotlib.cm as cm

from random import random,choice
import numpy as np

header = ['subreddit',0, 1, 2, 3,4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
def format():
output =]
header = list(map(str,header))
output.append(header)
with open('newnewsubredditData.csV','r'") as file:
reader = csv.reader(file,delimiter=",',quotechar="")
for line in reader:
if line:
temp_dict = eval(line[1])
counts = list(temp_dict.values())
counts = list(map(str,counts))
output.append([line[0]]+counts)

with open(‘formatedsubtimes.csv','w') as out:
for line in output:
out.write(',".join(line)+"\n")

def bootstrap(dataset:list) -> list:
outset =[]
while len(outset) != len(dataset):
outset.append(int(choice(dataset)))
return outset

subs_to_graph = {
'topcities":[
'nyc', 'seattle’, 'chicago’, 'toronto’, 'losangeles’,
'portland’, 'boston’, 'austin’, 'london’, 'sanfrancisco’,
'vancouver', 'washingtondc', 'houston’, 'atlanta’, 'philadelphia’,
'denver’, 'melbourne’, 'sandiego’, 'dallas’, 'montreal’, 'sydney',
'pittsburgh’, 'calgary', 'baltimore’, 'stlouis' #36ish
1,
'topsubs':[
'AdviceAnimals’, "WTF', 'funny', 'explainlikeimfive', "TumblrinAction’,
'news', 'pics', 'worldnews', 'movies’, 'tifu’, 'todayilearned’,
'leagueoflegends’, 'DestinyTheGame', 'nfl', 'videos', 'gifs', 'soccer’,

'DotA2', 'pcmasterrace’, 'gaming’, 'anime’, 'KotakulnAction', 'SquaredCircle’,

'relationships’, 'GlobalOffensive'#,'AskReddit' #askreddit has way more
comments than others, throws off scale

1,
‘europe”: [
'Europe’,'UnitedKingdom’,'Sweden','TheNetherlands','Ireland','France’,'London’,
'Denmark’,'ltaly’,'Norge','Suomi','Germany','Polska’,'DE','Belgium’,'Romania’,
'Scotland','Austria’,'Russia’,'Greece’,'Ukraina’,'Norway','lceland','Croatia’,'Portugal’

]

x=]
y = [header[1:]]
with open(‘formatedsubtimes.csv','r') as file:
dreader = csv.reader(file)
for line in dreader:
nums = list(map(int,line[1:]))
name = line[0]

min_ = min(nums)
max_ = max(nums)

#for max of each subreddit
#x.append(line.index(str(max_)) - 1 + (random() * 0.1))
#y.append(max_)

#for each subreddit need to iterate once to get total num of subs
if name.upper() in (name.upper() for name in subs_to_graph['europe’]):
print(name)
x.append(line)
colors = cm.rainbow(np.linspace(0, 1, len(x)+1))

#s0 red is more popular
colors = colors[::-1]
x = sorted(x,reverse=True,key=lambda a: max(list(map(int,a[1:]))))

fig = plt.figure()
ax1 = fig.add_subplot(111)

legends =[]
for count,votes in enumerate(x):

nums = list(map(int,votes[1:]))#cause csv is read as str need to cast
ax1.scatter(y,nums,c=colors[count]) #graph with colours specified earlier
#print(votes[0],votes[1:]) # logging

#print(nums,y[0])

#print(np.polyfit(nums,y[0],2))

legend = mpatches.Patch(color=colors[count], label=votes[0]) #label
legends.append(legend)
#.plot(nums, np.poly1d(np.polyfit(x, y, 1))(np.unique(x)))

#my attempt at bagging

all_bag =]
for _in range(50):
bag_list =]
for hour in y[0]:
hour_list =[]
bootstrap_hour =[]
for sub in x:
hour_list.append(sub[1:][hour])
for _in hour_list:
boot = bootstrap(hour_list)
bootstrap_hour.append(np.mean(boot))
bag_list.append(np.mean(bootstrap_hour))
plt.plot(y[0],bag_list,color="grey',alpha=0.3)
all_bag.append(bag_list)

#second iteration

final = []

for hour in y[0]:
bag_list =]
hour_list =[]

for bag in all_bag:
bag_list.append(bag[hour])

for _in bag_list:
boot = bootstrap(bag_list)
hour_list.append(np.mean(boot))

final.append(np.mean(bootstrap(hour_list)))

plt.plot(y[0],final,color="black")
plt.xticks(np.arange(0, 24, 1.0))
plt.legend(handles=legends)
plt.show()

Code Block C (Python)

import pickle
import json
from datetime import datetime as dt

i=0

all_=1]

with open('RC_2015-01",'rb") as file:

for line in file:

j = json.loads(line)
all_.append([j['created_utc'],j['subreddit'],str(j['score])])
if i % 100000 == 0: print(i)
i+=1

with open('kris_list.csv','w'") as out:
for line in all_:
out.write(',".join(line)+"\n")

Code Block D (Python)

newall =[]

i=0

with open('kris_list.csv','r') as csv_file:
for line in csv_file:

line_list = line.split(’,")
line_list[-1] = line_list[-1].replace('\n',") #get ride of newline char

hour = str((dt.fromtimestamp(int(line_list[0])).hour + 8)%24)

line_list[0] = hour
newall.append(line_list)
if i%100000 == 0: print(i)
i+=1

with open('3new_list.csv','w') as out:
for line in newall:
out.write(',".join(line)+"\n")

Code Block E (Python)

import csv

subredditHourDictionary = {}

newHourDict =
{0:0,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0,15:0,16:0,17:0,18:0,19:0,20:0,21:0,22:0,2
3.0}

i=0

with open(‘3new_list.csv','r') as csv_file:
for line in csv_file:
hourPosted = int(line.split(",")[0])
subredditName = line.split(",")[1]
totalVotes = int(line.split(",")[2])

#New subreddit
if subredditName not in subredditHourDictionary:
subredditHourDictionary[subredditName] = newHourDict.copy()

#Adding votes to correct hour of dictionary
subredditHourDictionary[subredditName][hourPosted] += totalVotes

if i %100000 == 0: print(i)

i+=1

with open('newnewsubredditData.csv', 'w') as newFile:
writer = csv.writer(newFile)
for k,v in subredditHourDictionary.items():

writer.writerow([k,v])

Code Block F (\R)
#Install the R package arules

install.packages(‘arules’);

#load the arules package
library("arules");
txn = read.transactions("comp_year.csv", format = "basket",rm.duplicates= FALSE ,sep=",", skip = 0)

Run the apriori algorithm
basket_rules <- apriori(txn,parameter = list(minlen= 2,maxlen=5,sup = 0.01, conf = 0.01,target="rules'));

Check the generated rules using inspect
inspect(basket_rules)

write(basket_rules,
file = "comp_years_assoc.csv",
Sep = ll’ll’
quote = TRUE,
row.names = FALSE)

Code Block G (Python)

import matplotlib.mlab as mlab

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches
import matplotlib.cm as cm

import os

from datetime import datetime,timedelta
from random import random

files = [file for file in os.listdir(".") if ".pic" in file]
print(files)

subj_enroll_begin = {}
subj_enroll_end = {}
FMT = '"%H%M'

fig = plt.figure()
ax1 = fig.add_subplot(111)

subjs = set()
for file_ in files:
with open(file_,'rb') as file:
contents = pickle.loads(file.read())
for list_ in contents:
for subj in list_:

for section in list_[subj]['data’]:
meetings = section['meetingsFaculty']
subjs.add(section['subject'])
colors = cm.rainbow(np.linspace(0, 1,len(subjs)+1))
subjs = list(subjs)
legends =[]
for file_ in files:
with open(file_,'rb') as file:
contents = pickle.loads(file.read())
for list_in contents:
for subj in list_:
for section in list_[subj]['data’]:
meetings = section['meetingsFaculty']
enroll = section['enrollment’]
subject = section['subject’]
for meeting in meetings:
begin = meeting.get('meetingTime').get('beginTime')
end = meeting.get('meetingTime').get('endTime'")
if None in [begin,end]: continue
clr = colors[subjs.index(subject)]
tdelta = datetime.strptime(end, FMT) - datetime.strptime(begin, FMT)
seconds_ = tdelta.total_seconds()/60 + random()
ax1.scatter(enroll,seconds_,color=clr)
print(file_)
subjs_set = set(subjs)
for sub in subjs_set:

clr = colors[subjs.index(sub)]
legend = mpatches.Patch(color=clr, label=sub) #label
legends.append(legend)

plt.legend(handles=legends)
plt.show()

Figure A1

15 A

h |
&
&
@

T T T
1000000 2000000 3000000

Figure A2

T
4000000

700000
600000 . . = °
. °
500000 .
e
°
- -
- & °
L] . s L]
400000 ®
5 o ° . .
« ° . s & .2
. .
& °
= (]
300000 . ° . & ” ®
°
= o ° ° H ®
. . ° - 4 L 3 L
. ° ° °
° .
s 8 . e H s S
.] » . - o °
e
200000 s ° L . . 2 [] s
.
o .] ° o ° ®
. .] ° = .]
¢ . ° p o o] e - .
. ° U] H
° a 1 8 M M & 2
- ® s s
100000 - ¥ ° H] Y ° ° g
. 3 H s] [] L ® H 2 .]
& 2 - M - g <
2 5 8 Y E 3 & 0 i 2 . i '
- x 2 !
! ! ' ' [] ‘ ']] ¥ s @ . §
! ¢ 0 LI I A I | LI
)
0 1 2 3 4 H 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

. AdviceAnimals

explainiikeimfive
Games
TumblrinActicn
news

pics

worldnews
movies

todayilearned
leagueofiegends
DestinyTheGame

smashbros
soccer
DotA2
pcmasterrace
gaming
Bitcoin
aww
hearthstone
anime
AskWomen
SubredditDrama
KotakulnAction
squaredcircle
BlackPeopleTwitter
Showerthoughts
Fitness
relationships
— trees
= AskMen
1ama
Globaloffensive
mildlyinteresting
atpeoplehate
achan

m—technalnay

Figure A3

700000

todayilearned

600000 4 . ® .
® AdviceAnimals

tifu

leagueoflegends

worldnevws

soccer

crB

movies

WIF

news

hockey

SquaredCircle

gifs

gaming

relationships

" pemasterrace

TumblrinAction

anime

explainlikeimfive

photoshopbatties

DestinyTheGame

Showerthoughts

technology

politics

Globaloffensive

500000

400000

0

300000

H

200000

om e ewecee

me o
>
»
0 e0o
a»

aww
hiphopheads
hearthstone.
smashbros
DotA2

achan

trees

Games

100000 4

@e we
anfmnen cwme
@l s e o oo

ing

o 1 2 3 a 5 6 7 8 9 0 1 12 13 14 15 16 17 18 19 20 TrolixChromosomes
magicTCG
nottheonion
atheism
fatpeoplehate
RlackPannlaTwitter

Figure A4

700000

todayilearned
AdviceAnimals
tifu w: e °
leagueofiegends o
. worldnews
soccer
movies, L]
WIF
news
squaredCircle . ']
. gifs. .
] ® = gaming ’
W relationships
= pcmasterrace
W TumblrinAction * * °
EEm anime @ ® : L] L)
. . explainiikeimfive S ° -
=
-
-
-

2
Q

600000

500000

400000

DestinyTheGame

GlobalOffensive

DotAz ° ° &
KotakulnAction

300000 ° (]

200000

100000

Figure A5

fr— W toronto
B houston []
. nyc
e boston A .
chicago .
vancouver L4
sydney .
0000 melbourne
london
washingtondc . L]
sanfrancisco
°
i philadelphia
mmm baltimore L]
8000 | mmm montreal L
B pittsburgh ™
- H . .
= sandiego
- [. ® ® (]
L]
6000 . * & ® .
™ @
4000 q
2000
0
0 1 2 3 a 5 6 7 8 9 0 1 12 13 14 15 16 7 18 19 20 21 22 23
m battlecats
. = catsvstechnology
= 316cats
.
175 m— wildcats
. = blcats
. = spacecats
B pimpcats
5 e bengalcats
150 = catssittingdown
. e catsonglass
. 8 s blackcats
e rescuecats
. catseatingpasta
125 o . Siamesecats
mMsUcats
. gfycats
° nakedcats
Arizonawildcats
o8 . cuteguyswithcats
s = dincybearcats
ifuckinghatecats.
kywildcatsbbn
© catsgettinghigh
s .
N snowcats
& grumpycats
. Thundercats
o . vgcats
s0 . ihatecats
. o . ° picsofharlequincats
. . b catsindogbeds
" . o catsridingroombas
' 04 » . 2 . W catsgonewild
25 $ + 8 ¢ 2 o % ; = gingercats
e o . i
. H ’ = kawaiicats
' . crosseyedcats
= catshare
e Boutoflocats
o mm funnycats
= bigcats
=
© 1 2 3 4 5 6 7 8 9 1o 11 12 13 14 15 16 17 18 19 20 EEE savennahcats
. angrycats
= bigwildcats
. paintcats
B catadvicecats
—earcare

Figure A7

- OUR
. THTR
BN EDEF
DIS

S0CW
NAST
ESAL
SINC

BUSN
EDMA
HEAL
EDHC
FNCE
VISA

comp
HORT
MKTG
GEOG
BES
EDSO
CHBI
FRAN
EPHY
ENVS

1000

400 = = o HIST

EDSL

EDIT

SOCI

LING

ANTH

ASTR

200 d g PHED

o7 0088:8000"" $200:8%80 000000 0 0005 0 cotctpo0tibie ctite o e o ° E;EE

L e o8 wele o l':1LTH

06 (808200000 007700708 ~ 1070000 @ & 00 000 <608 © cse o EDLL

3 TeSTe 99T 055 PBVTTH8BC & O B L] [] CHEM

o200 & pi0ie S @ @ 3 ° ® oo o oo ENGL

SPEE

0 CHIN

0 20 40 60 80 100 LAWF

. IBUS

. SAWF

. TMGT

Juc OAWP

nRAF

Figure B1

913 |{4chan} => {pcmasterrace} 0.001635 0.182039 5.899314 3600
914|{pcmasterrace} => {4chan} 0.001635 0.052975 5.899314 3600
915 |{4chan} => {technology} 0.001178 0.13122 5.378068 2535
916_{techn0|0gy} =>{4chan} 0.001178 0.052785 5.873068 2595
917 {4chan} => {WTF} 0.002794 0.311084 5.638125 6152
913_{WTF} =={4Achan} 0.002794 0.05063 5.838125 6152
915:{4chan} == {AdviceAnimals} 0.002578 0.287116 4.516902 5678
920| {AdviceAnimals} == {4chan} 0.002578 0.040561 4.516902 5678
921|{Android} => {pcmasterrace} 0.0015 0.125401 4.19349 3304
922 |{pcmasterrace} => {Android} 0.0015 0.04862 4.19349 3304
923 |{Android} => {technology} 0.00202 0.174206 7.803665 44438
924 |{technology} => {Android} 0.00202 0.090476 7.803665 4448
925 |{Android} => {WTF} 0.001856 0.160067 2.901079 4087
926|{WTF} => {Android} 0.001856 0.033635 2.901079 4087
92?:{Andr0id}:> {AdviceAnimals} 0.001973 0.170681 2.685153 4358
928| {AdviceAnimals} => {Android} 0.001979 0.031132 2.685153 4358
92%{mil|ionairemakers} =»{league 0.001254 0.052234 1.077067 2762
QBQ{Ieagueoﬂegends} =>{milliona 0.001254 0.025861 1.077067 2762
93l_{millionairemakers} =>»{nfl} 0.001267 0.052783 1.989606 2791
932 {nfl} == {millionairemakers} 0.001267 0.047771 1.989606 2791
933‘_{mil|ionairemakers} =»{pcmasi 0.00183 0.076215 2.469879 4030
934 | {pcmasterrace} == {millionairer 0.00183 0.059303 2.469379 4030
935_{mi||i0nairemakers} =»{techno 0.001165 0.048528 2.17383 2566
936_{technology}:> {millionairema 0.001165 0.052195 2.17383 2566
93}:{millionairemakers} =>{WTF} | 0.002402 0.100043 1.8132 5230
938|{WTF} == {millionairemakers} = 0.002402 0.043536 1.8132 5290

Figure B2

!rules support confidence lift count

E{nintendo} =>{3Ds} 0.001060283 0.296771734 56.49753397 2335
E{3DS} => {nintendo} 0.001060283 0.201849931 56.49753397 2335
|{gonewildcurvy} => {gonewild} 0.001191058 0.394970637 37.5684067 2623
E{gonewild} => {gonewildcurvy} 0.001191058 0.113289854 37.5684067 2623
E{CollegeBasketball} => {CFB} 0.001380865 0.422537168 36.63357825 3041
E{CFB} =>{CollegeBasketball} 0.001380865 0.119719696 36.63357825 3041
E{halo} => {xboxone} 0.001042119 0.236839913 31.39964288 2295
E{xboxone} => {halo} 0.001042119 0.138103262 31.39964288 2295
| E{Gunners} => {soccer} 0.001143834 0.47519336 31.19663885 2519
5{soccer} => {Gunners} 0.001143834 0.075093158 31.19663885 2519
] E{AskWOmen} =>{AskMen} 0.002104218 0.276673234 29.47615952 4634
i E{AskMen} =>{AskWomen} 0.002104218 0.224178801 29.47615952 4634
- E{reddevils} =>{soccer} 0.001009425 0.444855965 29.21154147 2223
| E{soccer} => {reddevils} 0.001009425 0.066269191 29.21154147 2223
i |{atheism,technology} => {politics} 0.001179706 0.471164309 27.58229356 2598
" |{nba,nfl} => {CFB} 0.001260533 0.311420238 26.99984405 2776
i E{CFB,nba} => {nfl} 0.001260533 0.693826543 26.15320157 2776
! E{Kotaku\nAction} =>{TumblrinAction} 0.001003068 0.258665105 25.47942111 2209
| E{Tumblr\nAction} =>{KotakulnAction} 0.001003068 0.098805743 25.47942111 2209
|{cowboys} => {nfl} 0.001161543 0.591718714 22.30433376 2558
! | {nfl} => {cowboys} 0.001161543 0.043783377 22.30433376 2558
i E{csgobetting} => {GlobalOffensive} 0.002243622 0.401642009 22.27039564 4941
. E{GlobaIfoensive} => {csgobetting} 0.002243622 0.124405167 22.27039564 4941
i {GlobalOffensiveTrade} => {GlobalOffensive} 0.001488028 0.395820751 21.94761636 3277
i |{GlobalOffensive} => {GlobalOffensiveTrade} 0.001488028 0.082508749 21.94761636 3277
| E{Patrio‘rs} =>{nfl} 0.002031565 0.572855314 21.593293093 4474

i E{nﬂ} => {Patriots} 0.002031565 0.076578119 21.59329393 4474

| G S e Y I P TR P U o o (Y AR |, | AANATIAACA | A DCINICAAA | A4 ACAOAC A ATAa

