

TRU Student Class Combinations and

Reddit Comment Data Analysis

Evan Mackay

Kristofer Campbell

Introduction

For our final project, we decided on two datasets that we found to be interesting

in the sense that they were both relevant to the course material in this class, and they

were relevant to our interests as well.

The first dataset is a list of all TRU student’s class combinations for Winter 2018.

We were able to obtain this data simply by asking the TRU IT department nicely. They

were kind enough to provide the data by writing an SQL statement to return the

necessary data, while filtering out unnecessary information such as students that

dropped the classes, or only audited the class (Code Block A). In addition to simply

being an interesting dataset to analyze, we also believed that our work could possibly

help TRU with eliminating some course conflicts in the future. Currently, TRU predicts

the number of students that will take a class simply by using the number of students that

took the class in the previous semester, but they don’t take into account the growth or

decline of a field of study. In conjunction with this dataset we used the publicly available

course data that contains information about the course, location, meeting times, and the

professor teaching the course.

The second dataset is of all Reddit comments in the month of January of 2015

(Baumgartner). This dataset was particularly challenging to work with, simply because

of its size. This dataset contained all usernames, subreddit information, time the

comment was posted, number of upvotes, number of downvotes and much more, for an

entire month of one of the internet’s largest websites. Originally, the entire dataset was

larger than 30 GB. After working with it and removing the information we did not need,

one of our final CSV files for one of our analysis methods was a little more than 8 MB.

TRU Class Associations

One of the methods we used to analyse the TRU student dataset was to apply

association rules in order to determine classes that are often taken together in a single

semester.

Our first attempt at mining association rules proved unsuccessful. We only used

a single semester of data and we used every course on the list. This was unsuccessful

for two reasons. Firstly, the diversity of the itemsets in the dataset was quite high which

required extremely low cutoffs for confidence and lift. Secondly, the dataset was not

filtered at all which allowed what I called ‘prescribed semesters’ to massively influence

the association rules. ‘Prescribed semesters’ is the name I gave to semesters in which

the student is not given the option to choose which classes to take. This skews the

results when a large amount of students take ‘prescribed semesters’ the classes in

those semesters become associated with other classes in the ‘prescribed semester.’

Once we became aware of the problems we started filtering the dataset. The first

thing we did was remove the ‘prescribed semesters’, we discovered that certain

subjects have ‘prescribed semesters’ so we were able to add a filter to disinclude the

subjects that we knew had ‘prescribed semesters.’ To solve the issue of the diversity of

the itemsets being too high we both choose to find association rules of class

combinations that contained a specified subject and decided to use 7 years of class

combinations instead of a single semester. We chose the subject ‘COMP’ as we were

most familiar with it. This provided interesting results, when we sorted the ‘COMP’ rules

by confidence we found that the top 9 rules didn’t contain a single ‘COMP’ class,

instead contained ‘BIOL’ classes being associated with other ‘BIOL’ classes. We

theorized that this was due to Biology being a much more popular subject than

Computer Science. Combinations containing COMP were 70% as common as

combinations containing BIOL. By looking at the program requirements we were able to

see that Biology students are encouraged to take certain Computer Science classes as

electives. Both of these theories would explain the top association rules for Computer

Science. We will look into whether this appears with other subjects as a way of

optimizing how TRU could schedule classes.

TRU Class Size vs Length

We noticed at TRU in our experience there was very small class sizes. We

wanted to see if this expanded across different subjects and if so, does class length

have an impact. We saw (Figure A7 the x axis being class size and the y axis being

class length) that a couple clusters emerged. One cluster of the orange points

represented the nursing practicum while the business classes had large class sizes with

relatively short class length. We also noticed how the majority of the classes taught at

TRU had under 80 students with the size sharply declining as class length increased.

We theorized that this had more to do with TRU scheduling than it had to do with

students preferring to take smaller class sizes. There would be no way of knowing as

currently students choose classes from what the schedule shows. There is also very

little option to take classes of different length at TRU due to limited options.

Subreddit Associations

From the original Reddit dataset (Baumgartner), only two variables were needed

from each data point to create associate rules for subreddits.

Firstly, the username of the user that posted the comment. This will help us with

grouping the data into a list of subreddits that each user participates in. Secondly, the

subreddit name where the comment was posted. With these two variables for each

data point, it is possible to create a list of all subreddits that each user commented on in

January of 2015.

One problem with our data gathering method in this case, is that user

participation on Reddit should not completely be linked to commenting. There are many

more ways to participate on a subreddit other than commenting on a post. Users can

vote on posts or comments, or submit their own content. These forms of activity were

not included in our dataset, so any association rules for user activity on a subreddit is

solely linked to which subreddits they commented on in January of 2015.

Another potential problem is that subreddits which essentially represent the same

concept may have their associations disproportionately changed. If a user participates

on r/NBA for example, they may not participate on r/Basketball, even though it is

something they may be interested in, simply because they have satisfied their

basketball content by already participating in r/NBA.

Our hope for this data analysis was to find interesting relationship between

unrelated subreddits. For example, if there was a strong correlation between r/Cats and

r/Bikes, that would be a surprising result that we would be interested in. We were less

interested in relationships between obviously related subreddits. For example a

relationship between r/Cats and r/Kittens would be unsurprising and mostly

uninteresting.

We expected default subreddits to dominate the top of the association rules. Not

just because they would have the most participation, but because new Reddit users

may be more likely to be stuck participating in the same default subreddits. So on

average, a default subreddit may be more likely to be associated with other default

subreddits only because users may not know where to find other subreddits.

Our actual findings determined that the default subreddits in fact did not

dominate the top of the association rules. The top rule when sorting by lift was

r/Nintendo → r/3DS (Figure B2). Like mentioned before, association rules like this are

rather uninteresting because they are quite predictable. Unfortunately, we didn’t predict

that since the range of data is so large, because there are thousands of subreddits, that

it is practically impossible to find interesting relations between seemingly unrelated

subreddits. Instead of being dominated by the default subreddits, our association rules

were instead populated by predictable combinations of sports subreddits or other

related topics. We looked for a long time for any interesting combination of subreddits

in our association rules, but failed to find anything noteworthy. Perhaps given a longer

time period than one month, users would be more likely to participate in a range of

subreddits, and that would give more interesting results.

Subreddit Hourly Activity Bagging

From the original huge Reddit dataset with all information that can possibly be

obtained from a Reddit comment for all of January 2015 (Baumgartner), only three

variables were needed from each piece of data in order to classify a subreddit into how

active it was in each hour of the day.

Firstly, the date and time a comment was posted. The original time given from

the dataset was in a unix timestamp format, which means that we had to convert it to a

normal date-time format. After doing this, and converting everything into UTC time

(Code Block D), all the comments ranged from January 1 00:00:00 to January 31

23:59:59.

Secondly, the subreddit name that the comment was posted to. This variable is

how we later categorized the data. It is technically possible to categorize the activity of

a subreddit using only these two variables, but in order to get a more accurate

representation, we also included a third.

Lastly, the total votes a comment received. A comment on Reddit can either be

upvoted (+1) or downvoted (-1). The total vote count on a comment is calculated by

taking the number upvotes and subtracting the number of downvotes. By taking into

consideration the total vote count of a comment, we can better quantify the activity of a

subreddit at a certain time. A comment can be voted on hours after it was posted of

course, but on average we believe this helps to categorize user activity.

After all the comment data was shortened to its timestamp, subreddit and vote

count (Code Blocks C and D), it was now possible to combine all the data points that

shared the same subreddit, and then further categorized it into the hour of the day it

was posted. Essentially, each subreddit had 24 values for the total count of votes on

comments that were posted in their respective hour. Since all timestamps were in UTC

time, the hours are standardized so it is then possible to compare subreddit activity

throughout a 24 hour period (Code Block E).

Many comparisons between most subreddits would be pointless, such as

comparing r/Cats and r/Tea would be mostly meaningless because the subreddits are

unrelated, and any difference in peak hours would most likely be random. However,

there are interesting comparisons that can be made between subreddits such as r/Cats

and r/Dogs for example. If there was a large difference in the peak of related

subreddits, it could suggest the the average user on one subreddit is more likely to be

active at a different time of day compared to the other subreddit. Our hopes were to

find interesting comparisons between related subreddits, but we also expected to find a

general user activity pattern that would apply to almost all subreddits. It would make

sense to find this, because the participation of a subreddit and its related topic would

likely have very minimal effect on the overall schedule of the user.

After adding some of the top subreddits to a plot of time vs votes, and ranking the

data so red represented subreddits with the highest overall participation, and blue had

the lowest (Figure A1), it was clear that the top subreddit in terms of votes on comments

was r/AskReddit. AskReddit has so much participation in fact, that it distorted the rest

of the chart and made patterns harder to see. After flipping the axis, and removing

r/AskReddit from the data, a clear pattern emerged from the data (Figure A2). There

appears to be a very strong correlation between the time a comment is posted, and the

number of votes the comment gets. For example, in the largest subreddits, a comment

posted at 9am UTC is expected to have approximately a quarter the number of total

votes as a comment at 6pm UTC. A linear regression line is added to show the overall

trend of these subreddits (Figure A3). In Figure A4, some of the subreddits were

removed to increase the readability, and the data was bagged.

The Bagging or Bootstrap Aggregation was done by first bootstrapping the

average of a subreddit at each individual hour. This was done for each hour and plotted

as a grey line on the graph (Figure A4 and A5). This was repeated 50 times (50 was an

arbitrary number we found with trial and error). We then bootstrapped the values of all

of the previously bootstrapped values at each hour to find the final bagged line. This

was plotted in black (Figure A4 and A5).

Our code allowed for easy analysis of a given list of subreddits, For example we

graphed all subreddits containing the word ‘cats’ (Figure A6) As in the situation with the

most popular subreddits we had to exclude the most popular subreddit ‘cats’ as it was

warping the scale of the graph. Unfortunately our dataset predates our favourite cat

related subreddit ‘SiberianCats’. There was too few comments across cat related

subreddits to produce a trend.

We also wanted to show the potential danger of the result if a subreddit was

associated with a certain geographical location. Of course, if a subreddit is extremely

particular to a location, the activity on the subreddit would correlate with that location’s

sleeping and activity patterns. In order to demonstrate this, we took some of the largest

location subreddits and compared them to each other. Most of the subreddits belong in

North America, and there is little variation among those, but a few European and

Oceanic subreddits are included which are in green shades. It is clear that those

subreddits have a drastically different activity pattern. Even among the North American

subreddits, there is a clear shift in activity hours between r/Toronto and r/Vancouver.

Vancouver appears to be a few hours later than Toronto, which makes sense since the

West coast is 3 hours behind the East coast time zone. This data was also bagged,

and the bagging lines are displayed.

References

Baumgartner, J. (n.d.). Learn about Big Data and Social Media Ingest and

Analysis. Retrieved from https://pushshift.io/

Eric Youd (2018, March 26) Person Conversation and datasource

L. M. Sheikh, B. Tanveer and M. A. Hamdani, "Interesting measures for mining

association rules," 8th International Multitopic Conference, 2004. Proceedings of INMIC

2004., 2004, pp. 641-644.

Appendix

Code Block A (SQL)

select student_uid as "UNIQUEID", --Delete UNIQUEID in output to anonymize

 student_term_code as "TERM",
 listagg(sections_subj_code||sections_crse_numb||sections_seq_numb) within group (order by
sections_subj_code,sections_crse_numb,sections_seq_numb) as "COURSES"
from studentDB.student join studentDB.sections
 on sections_term_code = student_term_code
 and sections_crn = student_crn
--
where student_campus_code = 'Kamloops' --Campus Only
 and student_term_code like '%0' --No OL semesters
 and student_type_code not like 'D%' --Ignore Drops
 and student_course_code not in ('Audit','Cancel') --No Audit/Cancels
 and sections_type_code <> 'N' --No Sem/Labs
 and sections_subj_code not like 'X%' --No Non-Transcriptables
group by UNIQUEID,
 student_term_code
order by "TERM" desc,
 "COURSES"

https://pushshift.io/

Code Block B (Python)

Evan Mackay

import csv
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.cm as cm
from random import random,choice
import numpy as np

header = ['subreddit',0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
def format():

output = []
header = list(map(str,header))
output.append(header)
with open('newnewsubredditData.csv','r') as file:

reader = csv.reader(file,delimiter=',',quotechar='"')
for line in reader:

if line:
temp_dict = eval(line[1])
counts = list(temp_dict.values())
counts = list(map(str,counts))
output.append([line[0]]+counts)

with open('formatedsubtimes.csv','w') as out:

for line in output:
out.write(','.join(line)+'\n')

def bootstrap(dataset:list) -> list:

outset = []
while len(outset) != len(dataset):

outset.append(int(choice(dataset)))
return outset

subs_to_graph = {

'topcities':[
'nyc', 'seattle', 'chicago', 'toronto', 'losangeles',
'portland', 'boston', 'austin', 'london', 'sanfrancisco',
'vancouver', 'washingtondc', 'houston', 'atlanta', 'philadelphia',
'denver', 'melbourne', 'sandiego', 'dallas', 'montreal', 'sydney',
'pittsburgh', 'calgary', 'baltimore', 'stlouis' #36ish
],

'topsubs':[
'AdviceAnimals', 'WTF', 'funny', 'explainlikeimfive', 'TumblrInAction',
 'news', 'pics', 'worldnews', 'movies', 'tifu', 'todayilearned',
'leagueoflegends', 'DestinyTheGame', 'nfl', 'videos', 'gifs', 'soccer',
'DotA2', 'pcmasterrace', 'gaming', 'anime', 'KotakuInAction', 'SquaredCircle',

'relationships', 'GlobalOffensive'#,'AskReddit' #askreddit has way more
comments than others, throws off scale

],
'europe': [

'Europe','UnitedKingdom','Sweden','TheNetherlands','Ireland','France','London',
'Denmark','Italy','Norge','Suomi','Germany','Polska','DE','Belgium','România',
'Scotland','Austria','Russia','Greece','Ukraina','Norway','Iceland','Croatia','Portugal'
]

}

x = []
y = [header[1:]]

with open('formatedsubtimes.csv','r') as file:

dreader = csv.reader(file)
for line in dreader:

nums = list(map(int,line[1:]))
name = line[0]

min_ = min(nums)
max_ = max(nums)

#for max of each subreddit
#x.append(line.index(str(max_)) - 1 + (random() * 0.1))
#y.append(max_)

#for each subreddit need to iterate once to get total num of subs
if name.upper() in (name.upper() for name in subs_to_graph['europe']):

print(name)
x.append(line)

colors = cm.rainbow(np.linspace(0, 1, len(x)+1))

#so red is more popular
colors = colors[::-1]
x = sorted(x,reverse=True,key=lambda a: max(list(map(int,a[1:]))))

fig = plt.figure()
ax1 = fig.add_subplot(111)

legends = []

for count,votes in enumerate(x):

nums = list(map(int,votes[1:]))#cause csv is read as str need to cast
ax1.scatter(y,nums,c=colors[count]) #graph with colours specified earlier
#print(votes[0],votes[1:]) # logging
#print(nums,y[0])
#print(np.polyfit(nums,y[0],2))

legend = mpatches.Patch(color=colors[count], label=votes[0]) #label
legends.append(legend)
#.plot(nums, np.poly1d(np.polyfit(x, y, 1))(np.unique(x)))

#my attempt at bagging

all_bag = []
for _ in range(50):

bag_list = []
for hour in y[0]:

hour_list = []
bootstrap_hour = []
for sub in x:

hour_list.append(sub[1:][hour])
for _ in hour_list:

boot = bootstrap(hour_list)
bootstrap_hour.append(np.mean(boot))

bag_list.append(np.mean(bootstrap_hour))
plt.plot(y[0],bag_list,color='grey',alpha=0.3)
all_bag.append(bag_list)

#second iteration
final = []
for hour in y[0]:

bag_list = []
hour_list = []
for bag in all_bag:

bag_list.append(bag[hour])
for _ in bag_list:

boot = bootstrap(bag_list)
hour_list.append(np.mean(boot))

final.append(np.mean(bootstrap(hour_list)))

plt.plot(y[0],final,color='black')
plt.xticks(np.arange(0, 24, 1.0))
plt.legend(handles=legends)
plt.show()

Code Block C (Python)

import pickle
import json
from datetime import datetime as dt

i = 0
all_ = []
with open('RC_2015-01','rb') as file:
 for line in file:
 j = json.loads(line)
 all_.append([j['created_utc'],j['subreddit'],str(j['score'])])
 if i % 100000 == 0: print(i)
 i+=1

with open('kris_list.csv','w') as out:
 for line in all_:
 out.write(','.join(line)+'\n')

Code Block D (Python)
newall = []
i = 0
with open('kris_list.csv','r') as csv_file:
 for line in csv_file:

 line_list = line.split(',')
 line_list[-1] = line_list[-1].replace('\n','') #get ride of newline char

 hour = str((dt.fromtimestamp(int(line_list[0])).hour + 8)%24)

 line_list[0] = hour
 newall.append(line_list)
 if i%100000 == 0: print(i)
 i += 1

with open('3new_list.csv','w') as out:
 for line in newall:
 out.write(','.join(line)+'\n')

Code Block E (Python)

import csv
subredditHourDictionary = {}
newHourDict =
{0:0,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0,15:0,16:0,17:0,18:0,19:0,20:0,21:0,22:0,2
3:0}
i = 0

with open('3new_list.csv','r') as csv_file:
 for line in csv_file:
 hourPosted = int(line.split(",")[0])
 subredditName = line.split(",")[1]
 totalVotes = int(line.split(",")[2])

 #New subreddit
 if subredditName not in subredditHourDictionary:
 subredditHourDictionary[subredditName] = newHourDict.copy()

 #Adding votes to correct hour of dictionary
 subredditHourDictionary[subredditName][hourPosted] += totalVotes

 if i %100000 == 0: print(i)
 i+=1

with open('newnewsubredditData.csv', 'w') as newFile:
 writer = csv.writer(newFile)
 for k,v in subredditHourDictionary.items():

 writer.writerow([k,v])

Code Block F (\R)

#Install the R package arules

install.packages('arules');

#load the arules package
library("arules");
txn = read.transactions("comp_year.csv", format = "basket",rm.duplicates= FALSE ,sep=",", skip = 0)

Run the apriori algorithm
basket_rules <- apriori(txn,parameter = list(minlen= 2,maxlen=5,sup = 0.01, conf = 0.01,target='rules'));

Check the generated rules using inspect
inspect(basket_rules)

write(basket_rules,
 file = "comp_years_assoc.csv",
 sep = ",",
 quote = TRUE,
 row.names = FALSE)

Code Block G (Python)

import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.cm as cm
import os
from datetime import datetime,timedelta
from random import random

files = [file for file in os.listdir('.') if '.pic' in file]
print(files)

subj_enroll_begin = {}
subj_enroll_end = {}
FMT = '%H%M'

fig = plt.figure()
ax1 = fig.add_subplot(111)

subjs = set()
for file_ in files:

with open(file_,'rb') as file:
contents = pickle.loads(file.read())
for list_ in contents:

for subj in list_:

for section in list_[subj]['data']:
meetings = section['meetingsFaculty']
subjs.add(section['subject'])

colors = cm.rainbow(np.linspace(0, 1,len(subjs)+1))
subjs = list(subjs)
legends = []
for file_ in files:

with open(file_,'rb') as file:
contents = pickle.loads(file.read())
for list_ in contents:

for subj in list_:
for section in list_[subj]['data']:

meetings = section['meetingsFaculty']
enroll = section['enrollment']
subject = section['subject']
for meeting in meetings:

begin = meeting.get('meetingTime').get('beginTime')
end = meeting.get('meetingTime').get('endTime')
if None in [begin,end]: continue
clr = colors[subjs.index(subject)]
tdelta = datetime.strptime(end, FMT) - datetime.strptime(begin, FMT)
seconds_ = tdelta.total_seconds()/60 + random()
ax1.scatter(enroll,seconds_,color=clr)

print(file_)
subjs_set = set(subjs)
for sub in subjs_set:

clr = colors[subjs.index(sub)]
legend = mpatches.Patch(color=clr, label=sub) #label
legends.append(legend)

plt.legend(handles=legends)
plt.show()

Figure A1

Figure A2

Figure A3

Figure A4

Figure A5

Figure A6

Figure A7

Figure B1

Figure B2

