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Introduction 

For our final project, we decided on two datasets that we found to be interesting 

in the sense that they were both relevant to the course material in this class, and they 

were relevant to our interests as well.  

The first dataset is a list of all TRU student’s class combinations for Winter 2018. 

We were able to obtain this data simply by asking the TRU IT department nicely.  They 

were kind enough to provide the data by writing an SQL statement to return the 

necessary data, while filtering out unnecessary information such as students that 

dropped the classes, or only audited the class (Code Block A).  In addition to simply 

being an interesting dataset to analyze, we also believed that our work could possibly 

help TRU with eliminating some course conflicts in the future.  Currently, TRU predicts 

the number of students that will take a class simply by using the number of students that 

took the class in the previous semester, but they don’t take into account the growth or 

decline of a field of study. In conjunction with this dataset we used the publicly available 

course data that contains information about the course, location, meeting times, and the 

professor teaching the course.  

The second dataset is of all Reddit comments in the month of January of 2015 

(Baumgartner).  This dataset was particularly challenging to work with, simply because 

of its size.  This dataset contained all usernames, subreddit information, time the 

comment was posted, number of upvotes, number of downvotes and much more, for an 

entire month of one of the internet’s largest websites.  Originally, the entire dataset was 



larger than 30 GB.  After working with it and removing the information we did not need, 

one of our final CSV files for one of our analysis methods was a little more than 8 MB.  

 

TRU Class Associations 

One of the methods we used to analyse the TRU student dataset was to apply 

association rules in order to determine classes that are often taken together in a single 

semester.  

Our first attempt at mining association rules proved unsuccessful. We only used 

a single semester of data and we used every course on the list. This was unsuccessful 

for two reasons. Firstly, the diversity of the itemsets in the dataset was quite high which 

required extremely low cutoffs for confidence and lift. Secondly, the dataset was not 

filtered at all which allowed what I called ‘prescribed semesters’ to massively influence 

the association rules. ‘Prescribed semesters’ is the name I gave to semesters in which 

the student is not given the option to choose which classes to take. This skews the 

results when a large amount of students take ‘prescribed semesters’  the classes in 

those semesters become associated with other classes in the ‘prescribed semester.’ 

Once we became aware of the problems we started filtering the dataset. The first 

thing we did was remove the ‘prescribed semesters’, we discovered that certain 

subjects have ‘prescribed semesters’ so we were able to add a filter to disinclude the 

subjects that we knew had ‘prescribed semesters.’ To solve the issue of the diversity of 

the itemsets being too high we both choose to find association rules of class 

combinations that contained a specified subject and decided to use 7 years of class 



combinations instead of a single semester. We chose the subject ‘COMP’ as we were 

most familiar with it.  This provided interesting results, when we sorted the ‘COMP’ rules 

by confidence we found that the top 9 rules didn’t contain a single ‘COMP’ class, 

instead contained ‘BIOL’ classes being associated with other ‘BIOL’ classes. We 

theorized that this was due to Biology being a much more popular subject than 

Computer Science. Combinations containing COMP were 70% as common as 

combinations containing BIOL. By looking at the program requirements we were able to 

see that Biology students are encouraged to take certain Computer Science classes as 

electives. Both of these theories would explain the top association rules for Computer 

Science. We will look into whether this appears with other subjects as a way of 

optimizing how TRU could schedule classes.  

 

TRU Class Size vs Length 

We noticed at TRU in our experience there was very small class sizes. We 

wanted to see if this expanded across different subjects and if so, does class length 

have an impact. We saw (Figure A7 the x axis being class size and the y axis being 

class length) that a couple clusters emerged. One cluster of the orange points 

represented the nursing practicum while the business classes had large class sizes with 

relatively short class length. We also noticed how the majority of the classes taught at 

TRU had under 80 students with the size sharply declining as class length increased. 

We theorized that this had more to do with TRU scheduling than it had to do with 

students preferring to take smaller class sizes. There would be no way of knowing as 



currently students choose classes from what the schedule shows. There is also very 

little option to take classes of different length at TRU due to limited options.  

 

Subreddit Associations 

From the original Reddit dataset (Baumgartner), only two variables were needed 

from each data point to create associate rules for subreddits. 

Firstly, the username of the user that posted the comment.  This will help us with 

grouping the data into a list of subreddits that each user participates in.  Secondly, the 

subreddit name where the comment was posted.  With these two variables for each 

data point, it is possible to create a list of all subreddits that each user commented on in 

January of 2015.  

One problem with our data gathering method in this case, is that user 

participation on Reddit should not completely be linked to commenting.  There are many 

more ways to participate on a subreddit other than commenting on a post.  Users can 

vote on posts or comments, or submit their own content.  These forms of activity were 

not included in our dataset, so any association rules for user activity on a subreddit is 

solely linked to which subreddits they commented on in January of 2015.  

Another potential problem is that subreddits which essentially represent the same 

concept may have their associations disproportionately changed.  If a user participates 

on r/NBA for example, they may not participate on r/Basketball, even though it is 

something they may be interested in, simply because they have satisfied their 

basketball content by already participating in r/NBA. 



Our hope for this data analysis was to find interesting relationship between 

unrelated subreddits.  For example, if there was a strong correlation between r/Cats and 

r/Bikes, that would be a surprising result that we would be interested in.  We were less 

interested in relationships between obviously related subreddits.  For example a 

relationship between r/Cats and r/Kittens would be unsurprising and mostly 

uninteresting.  

We expected default subreddits to dominate the top of the association rules.  Not 

just because they would have the most participation, but because new Reddit users 

may be more likely to be stuck participating in the same default subreddits.  So on 

average, a default subreddit may be more likely to be associated with other default 

subreddits only because users may not know where to find other subreddits. 

Our actual findings determined that the default subreddits in fact did not 

dominate the top of the association rules.  The top rule when sorting by lift was 

r/Nintendo → r/3DS (Figure B2).  Like mentioned before, association rules like this are 

rather uninteresting because they are quite predictable.  Unfortunately, we didn’t predict 

that since the range of data is so large, because there are thousands of subreddits, that 

it is practically impossible to find interesting relations between seemingly unrelated 

subreddits.  Instead of being dominated by the default subreddits, our association rules 

were instead populated by predictable combinations of sports subreddits or other 

related topics.  We looked for a long time for any interesting combination of subreddits 

in our association rules, but failed to find anything noteworthy.  Perhaps given a longer 



time period than one month, users would be more likely to participate in a range of 

subreddits, and that would give more interesting results.  

 

Subreddit Hourly Activity Bagging 

From the original huge Reddit dataset with all information that can possibly be 

obtained from a Reddit comment for all of January 2015 (Baumgartner), only three 

variables were needed from each piece of data in order to classify a subreddit into how 

active it was in each hour of the day.  

Firstly, the date and time a comment was posted.  The original time given from 

the dataset was in a unix timestamp format, which means that we had to convert it to a 

normal date-time format.  After doing this, and converting everything into UTC time 

(Code Block D), all the comments ranged from January 1 00:00:00 to January 31 

23:59:59. 

Secondly, the subreddit name that the comment was posted to.  This variable is 

how we later categorized the data.  It is technically possible to categorize the activity of 

a subreddit using only these two variables, but in order to get a more accurate 

representation, we also included a third. 

Lastly, the total votes a comment received.  A comment on Reddit can either be 

upvoted (+1) or downvoted (-1).  The total vote count on a comment is calculated by 

taking the number upvotes and subtracting the number of downvotes.  By taking into 

consideration the total vote count of a comment, we can better quantify the activity of a 



subreddit at a certain time.  A comment can be voted on hours after it was posted of 

course, but on average we believe this helps to categorize user activity. 

After all the comment data was shortened to its timestamp, subreddit and vote 

count (Code Blocks C and D), it was now possible to combine all the data points that 

shared the same subreddit, and then further categorized it into the hour of the day it 

was posted.  Essentially, each subreddit had 24 values for the total count of votes on 

comments that were posted in their respective hour.  Since all timestamps were in UTC 

time, the hours are standardized so it is then possible to compare subreddit activity 

throughout a 24 hour period (Code Block E).  

Many comparisons between most subreddits would be pointless, such as 

comparing r/Cats and r/Tea would be mostly meaningless because the subreddits are 

unrelated, and any difference in peak hours would most likely be random.  However, 

there are interesting comparisons that can be made between subreddits such as r/Cats 

and r/Dogs for example.  If there was a large difference in the peak of related 

subreddits, it could suggest the the average user on one subreddit is more likely to be 

active at a different time of day compared to the other subreddit.  Our hopes were to 

find interesting comparisons between related subreddits, but we also expected to find a 

general user activity pattern that would apply to almost all subreddits.  It would make 

sense to find this, because the participation of a subreddit and its related topic would 

likely have very minimal effect on the overall schedule of the user.  

After adding some of the top subreddits to a plot of time vs votes, and ranking the 

data so red represented subreddits with the highest overall participation, and blue had 



the lowest (Figure A1), it was clear that the top subreddit in terms of votes on comments 

was r/AskReddit.  AskReddit has so much participation in fact, that it distorted the rest 

of the chart and made patterns harder to see.  After flipping the axis, and removing 

r/AskReddit from the data, a clear pattern emerged from the data (Figure A2).  There 

appears to be a very strong correlation between the time a comment is posted, and the 

number of votes the comment gets.  For example, in the largest subreddits, a comment 

posted at 9am UTC is expected to have approximately a quarter the number of total 

votes as a comment at 6pm UTC.  A linear regression line is added to show the overall 

trend of these subreddits (Figure A3).  In Figure A4, some of the subreddits were 

removed to increase the readability, and the data was bagged.  

The Bagging or Bootstrap Aggregation was done by first bootstrapping the 

average of a subreddit at each individual hour. This was done for each hour and plotted 

as a grey line on the graph (Figure A4 and A5). This was repeated 50 times (50 was an 

arbitrary number we found with trial and error). We then bootstrapped the values of all 

of the previously bootstrapped values at each hour to find the final bagged line. This 

was plotted in black (Figure A4 and A5).  

Our code allowed for easy analysis of a given list of subreddits, For example we 

graphed all subreddits containing the word ‘cats’ (Figure A6)  As in the situation with the 

most popular subreddits we had to exclude the most popular subreddit ‘cats’ as it was 

warping the scale of the graph. Unfortunately our dataset predates our favourite cat 

related subreddit ‘SiberianCats’. There was too few comments across cat related 

subreddits to produce a trend.  



We also wanted to show the potential danger of the result if a subreddit was 

associated with a certain geographical location.  Of course, if a subreddit is extremely 

particular to a location, the activity on the subreddit would correlate with that location’s 

sleeping and activity patterns.  In order to demonstrate this, we took some of the largest 

location subreddits and compared them to each other.  Most of the subreddits belong in 

North America, and there is little variation among those, but a few European and 

Oceanic subreddits are included which are in green shades.  It is clear that those 

subreddits have a drastically different activity pattern.  Even among the North American 

subreddits, there is a clear shift in activity hours between r/Toronto and r/Vancouver. 

Vancouver appears to be a few hours later than Toronto, which makes sense since the 

West coast is 3 hours behind the East coast time zone.  This data was also bagged, 

and the bagging lines are displayed. 
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Appendix 

 

Code Block A (SQL) 

select student_uid as  "UNIQUEID",  --Delete UNIQUEID in output to anonymize  

 student_term_code as  "TERM", 
            listagg(sections_subj_code||sections_crse_numb||sections_seq_numb) within group (order by 
sections_subj_code,sections_crse_numb,sections_seq_numb)  as  "COURSES" 
from studentDB.student join studentDB.sections 
 on sections_term_code = student_term_code 
 and sections_crn = student_crn 
------------------------------------------------------------------ 
where student_campus_code = 'Kamloops' --Campus Only 
  and student_term_code like '%0'                 --No OL semesters 
  and student_type_code not like 'D%' --Ignore Drops 
  and student_course_code not in ('Audit','Cancel')  --No Audit/Cancels 
  and sections_type_code <> 'N' --No Sem/Labs 
  and sections_subj_code not like 'X%' --No Non-Transcriptables 
group by UNIQUEID, 
 student_term_code 
order by "TERM" desc, 
 "COURSES" 

https://pushshift.io/


 

 

Code Block B (Python) 

# Evan Mackay 
# 
import csv 
import matplotlib.pyplot as plt 
import matplotlib.patches as mpatches 
import matplotlib.cm as cm 
from random import random,choice 
import numpy as np 
 
 
header = ['subreddit',0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] 
def format(): 

output = [] 
header = list(map(str,header)) 
output.append(header) 
with open('newnewsubredditData.csv','r') as file: 

reader = csv.reader(file,delimiter=',',quotechar='"') 
for line in reader: 

if line:  
temp_dict = eval(line[1]) 
counts = list(temp_dict.values()) 
counts = list(map(str,counts)) 
output.append([line[0]]+counts) 

 
with open('formatedsubtimes.csv','w') as out: 

for line in output: 
out.write(','.join(line)+'\n') 

 
def bootstrap(dataset:list) -> list: 

outset = [] 
while len(outset) != len(dataset): 

outset.append(int(choice(dataset))) 
return outset 

 
subs_to_graph = { 

'topcities':[ 
'nyc', 'seattle', 'chicago', 'toronto', 'losangeles',  
'portland', 'boston', 'austin', 'london', 'sanfrancisco',  
'vancouver', 'washingtondc', 'houston', 'atlanta', 'philadelphia',  
'denver', 'melbourne', 'sandiego', 'dallas', 'montreal', 'sydney',  
'pittsburgh', 'calgary', 'baltimore', 'stlouis' #36ish 
], 

'topsubs':[ 
'AdviceAnimals', 'WTF', 'funny', 'explainlikeimfive', 'TumblrInAction',  
 'news', 'pics', 'worldnews', 'movies', 'tifu', 'todayilearned',  
'leagueoflegends', 'DestinyTheGame', 'nfl', 'videos', 'gifs', 'soccer',  
'DotA2', 'pcmasterrace', 'gaming', 'anime', 'KotakuInAction', 'SquaredCircle',  



'relationships', 'GlobalOffensive'#,'AskReddit' #askreddit has way more 
comments than others, throws off scale 

], 
'europe': [ 

'Europe','UnitedKingdom','Sweden','TheNetherlands','Ireland','France','London', 
'Denmark','Italy','Norge','Suomi','Germany','Polska','DE','Belgium','România', 
'Scotland','Austria','Russia','Greece','Ukraina','Norway','Iceland','Croatia','Portugal' 
] 

} 
 
x = [] 
y = [header[1:]] 
 
with open('formatedsubtimes.csv','r') as file: 

dreader = csv.reader(file) 
for line in dreader: 

nums = list(map(int,line[1:])) 
name = line[0] 

 
min_ = min(nums) 
max_ = max(nums) 

 
#for max of each subreddit 
#x.append(line.index(str(max_)) - 1 + ( random() * 0.1) ) 
#y.append(max_) 

 
#for each subreddit need to iterate once to get total num of subs 
if name.upper() in (name.upper() for name in subs_to_graph['europe']): 

print(name) 
x.append(line) 

colors = cm.rainbow(np.linspace(0, 1, len(x)+1)) 
 
#so red is more popular 
colors = colors[::-1] 
x = sorted(x,reverse=True,key=lambda a: max(list(map(int,a[1:])))) 
 
fig = plt.figure() 
ax1 = fig.add_subplot(111) 
 
legends = [] 
 
for count,votes in enumerate(x): 
 

nums = list(map(int,votes[1:]))#cause csv is read as str need to cast 
ax1.scatter(y,nums,c=colors[count]) #graph with colours specified earlier 
#print(votes[0],votes[1:]) # logging 
#print(nums,y[0]) 
#print(np.polyfit(nums,y[0],2)) 

 
legend = mpatches.Patch(color=colors[count], label=votes[0]) #label 
legends.append(legend) 
#.plot(nums, np.poly1d(np.polyfit(x, y, 1))(np.unique(x))) 

 
#my attempt at bagging 



all_bag = [] 
for _ in range(50): 

bag_list = [] 
for hour in y[0]: 

hour_list = [] 
bootstrap_hour = [] 
for sub in x: 

hour_list.append(sub[1:][hour]) 
for _ in hour_list: 

boot = bootstrap(hour_list) 
bootstrap_hour.append(np.mean(boot)) 

bag_list.append(np.mean(bootstrap_hour)) 
plt.plot(y[0],bag_list,color='grey',alpha=0.3) 
all_bag.append(bag_list) 

 
#second iteration 
final = [] 
for hour in y[0]: 

bag_list = [] 
hour_list = [] 
for bag in all_bag: 

bag_list.append(bag[hour]) 
for _ in bag_list: 

boot = bootstrap(bag_list) 
hour_list.append(np.mean(boot)) 

final.append(np.mean(bootstrap(hour_list))) 
 
plt.plot(y[0],final,color='black') 
plt.xticks(np.arange(0, 24, 1.0)) 
plt.legend(handles=legends) 
plt.show() 
 
 
 

Code Block C (Python) 
 
import pickle 
import json 
from datetime import datetime as dt 
 
i = 0 
all_ = [] 
with open('RC_2015-01','rb') as file: 
    for line in file: 
        j = json.loads(line) 
        all_.append([j['created_utc'],j['subreddit'],str(j['score'])]) 
        if i % 100000 == 0: print(i) 
        i+=1 
 
with open('kris_list.csv','w') as out: 
    for line in all_: 
        out.write(','.join(line)+'\n') 
 



 
 
Code Block D (Python) 
newall = [] 
i = 0 
with open('kris_list.csv','r') as csv_file: 
    for line in csv_file: 
 
        line_list = line.split(',') 
        line_list[-1] = line_list[-1].replace('\n','') #get ride of newline char 
 
        hour = str((dt.fromtimestamp(int(line_list[0])).hour + 8)%24) 
 
        line_list[0] = hour 
        newall.append(line_list) 
        if i%100000 == 0: print(i) 
        i += 1 
 
 
with open('3new_list.csv','w') as out: 
    for line in newall: 
        out.write(','.join(line)+'\n') 
 

Code Block E (Python) 

 
import csv 
subredditHourDictionary = {} 
newHourDict = 
{0:0,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0,15:0,16:0,17:0,18:0,19:0,20:0,21:0,22:0,2
3:0} 
i = 0 
 
with open('3new_list.csv','r') as csv_file: 
     for line in csv_file: 
        hourPosted = int(line.split(",")[0]) 
        subredditName = line.split(",")[1] 
        totalVotes = int(line.split(",")[2]) 
 
        #New subreddit 
        if subredditName not in subredditHourDictionary: 
            subredditHourDictionary[subredditName] = newHourDict.copy() 
 
        #Adding votes to correct hour of dictionary 
        subredditHourDictionary[subredditName][hourPosted] += totalVotes 
  
        if i %100000 == 0: print(i) 
        i+=1 
 
with open('newnewsubredditData.csv', 'w') as newFile: 
    writer = csv.writer(newFile) 
    for k,v in subredditHourDictionary.items(): 



        writer.writerow([k,v]) 
 
 

Code Block F (\R)  

#Install the R package arules 

install.packages('arules'); 

#load the arules package 
library("arules"); 
txn = read.transactions("comp_year.csv", format = "basket",rm.duplicates= FALSE ,sep=",", skip = 0) 
 
# Run the apriori algorithm 
basket_rules <- apriori(txn,parameter = list(minlen= 2,maxlen=5,sup = 0.01, conf = 0.01,target='rules')); 
 
# Check the generated rules using inspect 
inspect(basket_rules) 
 
write(basket_rules, 
      file = "comp_years_assoc.csv", 
      sep = ",", 
      quote = TRUE, 
      row.names = FALSE) 
  

 

 

Code Block G (Python) 

import matplotlib.mlab as mlab 
import matplotlib.pyplot as plt 
import matplotlib.patches as mpatches 
import matplotlib.cm as cm 
import os 
from datetime import datetime,timedelta 
from random import random 
 
files = [file for file in os.listdir('.') if '.pic' in file] 
print(files) 
 
subj_enroll_begin = {} 
subj_enroll_end = {} 
FMT = '%H%M' 
 
fig = plt.figure() 
ax1 = fig.add_subplot(111) 
 
subjs = set() 
for file_ in files: 

with open(file_,'rb') as file: 
contents = pickle.loads(file.read()) 
for list_ in contents: 

for subj in list_: 



for section in list_[subj]['data']: 
meetings = section['meetingsFaculty'] 
subjs.add(section['subject']) 

colors = cm.rainbow(np.linspace(0, 1,len(subjs)+1)) 
subjs = list(subjs) 
legends = [] 
for file_ in files: 

with open(file_,'rb') as file: 
contents = pickle.loads(file.read()) 
for list_ in contents: 

for subj in list_: 
for section in list_[subj]['data']: 

meetings = section['meetingsFaculty'] 
enroll = section['enrollment'] 
subject = section['subject'] 
for meeting in meetings: 

begin = meeting.get('meetingTime').get('beginTime') 
end = meeting.get('meetingTime').get('endTime') 
if None in [begin,end]: continue 
clr = colors[subjs.index(subject)] 
tdelta = datetime.strptime(end, FMT) - datetime.strptime(begin, FMT) 
seconds_ = tdelta.total_seconds()/60 + random() 
ax1.scatter(enroll,seconds_,color=clr) 

print(file_) 
subjs_set = set(subjs) 
for sub in subjs_set: 

 
clr = colors[subjs.index(sub)] 
legend = mpatches.Patch(color=clr, label=sub) #label 
legends.append(legend) 
 

plt.legend(handles=legends) 
plt.show() 
 

 

 

 

 

 

 

 

 

 

 

 



Figure A1 
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