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1 Abstract

This paper presents a comparison of two methods
of sequence alignment algorithms using the proba-
bilistic data structures: Bloom Filters and Markov
chains. When comparing Bloom filters and Markov
chains, versus typically used algorithms we were able
use Bloom filters to show a reduction in time com-
plexity from multiplicative to linear. Using Markov
chains, we show how match, mismatch, and indel
scores can be inferred from empirical data. Results
from implementation show how these probabilistic
data structures could be used to filter possible align-
ments before applying conventional global alignment
algorithms.

2 Introduction

The purpose of this study was to determine the
feasibility of using probabilistic subsequence meth-
ods to identify sequence relationships and to compare
the versatility of these methods with the subsequence
search tools currently used. As paralogs are likely to
have similar genes and functions, sub-string search-
ing is necessary to properly identify these similari-
ties. In view of the challenges faced in the industry,
our team aimed to identify how probabilistic methods
compare with Needleman-Wunsch and BLAST meth-
ods respectively. Currently, it is not yet possible to
compare full length sequences with current technolo-
gies. As computation power is limited, there is a high
demand for a quick, clever way to compare 2 or more
sequences.

Markov chains are a way of preserving states and
their transitions. We used Bloom Filters to see the
probability of transitioning from one subsequence to
another. From this we can generate the likelihood of
transition from one sequence to the next.

Bloom filters are characterized by performing sev-
eral different quick hashing methods on each subse-

quence. This results in several different integer val-
ues. These values are then stored in a single bit vec-
tor. In order to accurately test for membership in the
sequence, the same hashes are then performed to the
subsequence that is being searched. If there is not
an complete match on the bit vector it can be de-
termined that the subsequence does not exist in the
given sequence. When all of the bit vectors match,
this indicates the subsequence exists in the sequence
given an accuracy dependent on the length of k and
the number of hashes used.

We hypothesize that probabilistic methods of se-
quence alignment can demonstrate a marked im-
provement over conventional algorithms.

3 Methods

3.1 Markov Chain

Markov Chains are a way of representing a sequence
of possible system events or states and the potential
of transition from one state to another. A Markov
Chain is created from the entire sequence for each k-
mer with the probabilities of the next k-mer appear-
ance. The subsequence to be searched is then con-
verted into k-mer segments, using Markov chains the
probabilities of the entire subsequence are then cal-
culated. For the purpose of our research, our Markov
Chain is built from the k-mer sub-sequences of a long
protein sequence. This implementation requires a
O(2n) time complexity, which can be scaled down to
O(n) respectively.

3.1.1 The Algorithm

The K-Mer Markov Chain is created from the en-
tire sequence for each k-mer with the probabilities of
the next k-mer appearance. The subsequence to be
searched is then converted into k-mer segments, using



Markov chains the probabilities of the entire subse-
quence are then calculated. The probabilities are cal-
culated by counting the number of occurrences that
a k-mer appears after another k-mer.

3.1.2 Experimentation and implementation

We implemented k-mer Markov chains using Python
3.6. The first step in creating the Markov chain is to
engender a dictionary of all words in the sequence of
length k. This dictionary also stores the occurrences
for every following word in the sequence.

For example, with a k-mer length of 3, 'LCVN-
QEY’ would increment the count of 'NQE’ after
'LCV’ in the dictionary. It would also increment the
count of '"QEY’ after '"CVN’ in the dictionary, this is
called the sliding window approach.

3.2 Bloom Filters

Bloom filters are a bit vector where all fields are ini-
tially set to 0. Using k independent hash functions
with each of the hash functions outputting a number
between 0 and the length of the bloom filter. Ele-
ments are added to the bloom filter by applying each
hash function and setting the bit in the position gen-
erated by each hash to 1.

To check if an element is present in a Bloom filter
the same hashes are applied to the element in ques-
tion. If all the bits in the positions generated from
each hash are set to one we can confidently say the
element probably exists in the set.

Using the quick lookup time of checking for pres-
ence in a Bloom filter we are able to quickly align
sequences compared to the widely used Needleman
Wunsch algorithm.
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4 Results

We measured the integrity of our results using three
criteria: Memory used, Quality of results, and to-
tal execution time. When compared against the
Needleman-Wunsch Algorithm, our K-Mer Bloom fil-
ter outperformed in all three areas. In terms of
time, bloom filters run at an impeccable O(n), far
superior to Needleman-Wunsch, having a time com-
plexity Q(m *n). Taking quality into consideration,
we found Bloom Filters to be consistent regardless
of size, whereas Needleman-Wunsch’s accuracy in-
creases with size. The most significant finding is the
memory used. Our results show bloom filters O(n)
complexity to be substantially superior in memory
usage, given Needleman-Wunsch’s burdensome mem-
ory usage of O(N?). A linear regression shows that
the Bloom filter indexing stage takes only 1.7 seconds,
compared to 20.2 for the Integer-encoded and 11.9 for
the string-based indexing. Similarly, the Bloom filter
matches 1718 sequences per second, compared to 589
and 310 for the Integer and string based indexes, re-
spectively. (Malde, OaSullivan, 2008.)

The K-mer Markov chain method posed quite ap-
prehensive results. K-mer Markov Chains can be
used to represent the states and transition probabil-
ities of protein sequences, however, the memory and
computational power required for any useful analy-
sis is too high compared to other methods. Using a
k-mer length of 5 with a sequence of 2.5 million pro-
teins, the resulting Markov chain is already over 200
MB, with this size only increasing exponentially with
larger k-mer values.

5 Conclusion

Needleman-Wunsch is more gradual, but can be ap-
plied to a far wider range of data sets. In compar-
ison, Bloom Filters exceed Needleman-Wunsch sub-
stantially, but can only be applied to a niche set.
Bloom filter could potentially be used as a prepro-
cessing stage to eliminate unlikely candidates for a
match.

For practical purposes, Markov chains are too
memory-intensive. These Markov chains, not includ-
ing probabilities of insertion/deletion, could be feasi-
ble used on a small scale. K-mer Markov chains is a
great way to represent the states and transition prob-
abilities of a small protein sequences, but becomes
computationally infeasible with larger sequences.
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